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Abstract. The transfer-Hamiltonian (t-H) method is applied to study spin-dependent low-rate
transfer of electrons between magnetically ordered metallic electrodes separated by a potential
barrier. A weak coupling of the electrodes through the potential barrier is described with
help of a t-H treated as a perturbation. Spin-dependent tunnelling probability amplitudes are
expressed by a 2× 2 matrix with elements evaluated through an overlap between the spinor
components of the electron wavefunctions from both sides of the potential barrier, resulting in
spin-dependent tunnelling current and tunnelling conductance. In particular, the magnetic valve
effect in tunnelling between two ferromagnets and elements of the theory of a spin-polarized
scanning tunnelling microscope with a ferromagnetic tip are analysed. The t-H method is useful
also in applications to tunnelling in magnetic nanostructures and multilayers.

1. Introduction

Spin-polarized tunnelling phenomena have been studied quite extensively during recent
years. Early experiments in this field [1] were made using junctions of thin ferromagnetic
and superconducting films separated by an oxide layer. Julliere [2] was the first to show that
the tunnelling conductance between two ferromagnetic films depends on relative orientation
of their magnetizations. Spin-dependent transport phenomena are also responsible for the
‘giant magnetoresistance’ in magnetic multilayers [3]. The magnetoresistance appearing in
tunnelling junctions is called tunnelling magnetoresistance. In magnetic nanostructures its
magnitude can be of the order of the giant magnetoresistance [4, 5].

An interesting field of spin-polarized tunnelling phenomena is spin-polarized scanning
probe microscopy (SPSPM). Several authors have proposed such devices utilizing various
types of tip material. These include ferro- or antiferromagnetic tips [6–8] or optically
pumped nonmagnetic semiconductors [9–18]. In SPSPM images it should be possible to
detect spin asymmetry of the tunnelling current or that of the force acting between the tip
and the sample [17]. Then it is possible to probe magnetic properties of the sample surface
with a very high spatial resolution.

The transfer-Hamiltonian (t-H) method was developed by Oppenheimer [19] in 1928
for treating tunnelling problems in atomic physics. Later Bardeen extended it to tunnelling
in solid state structures [20]. In the t-H method a potential barrier is regarded separating
the system to two parts coupled weakly by a transfer Hamiltonian that can be treated as
a perturbation in time-dependent perturbation theory. This approach has been very useful
in applications like theory of scanning tunnelling microscopy (STM) [21] and theory of
tunnelling between superconductors [20].
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As we shall show the t-H method can be applied to spin-polarized tunnelling when
the corresponding Hamiltonian contains operators acting on the spin degree of freedom.
The approximate solution of the tunnelling problem is written in terms of wavefunctions
of uncoupled systems. Thus even if they are not known explicitly, as in the case of an
arbitrary potential barrier, it is still possible to reveal the physical meaning of the spin-
dependent tunnelling characteristics writing them in terms of those wavefunctions. This
is interesting since such magnitudes carry information about magnetic properties of the
electrodes. For instance, in the theory of spin-polarized STM such analysis helps us to
understand the physical contents of the images obtained with this device. The t-H method
allows extensions of the well known approach based on analysis of spin-polarized tunnelling
effects using an exactly solvable rectangular potential barrier problem [22–25] towards an
arbitrary potential barrier when the two electrodes are well separated from each other (the
‘weak-coupling’ limit). In a particular case of a nonmagnetic optically pumped tip and a
ferromagnetic sample the tunnelling current and the exchange force have been calculated
using the t-H method [14, 16–18]. In the following we generalize the t-H description of
spin-polarized electron tunnelling to electrodes having any type of spin order. An effective
one-electron picture is used in the calculations.

2. Tunnelling matrix elements for spin-polarized tunnelling

Let us consider two magnetically ordered metals that are labelled as l (left) and r (right)
in figure 1. They are separated by a relatively wide vacuum gap in the middle of which a
separation surfaceS is situated. The volume to left (right) ofS is denoted asVl (Vr). In the
following we adopt an effective one-electron picture similar to that used e.g. by Slonczewski
in his theory of spin-polarized tunnelling between two ferromagnets [22].

Figure 1. Location of the separation surfaceS between the metallic electrodes at left (l) and at
right (r). The space to left or right fromS is denoted byVl andVr respectively. dS is a vector
element normal to the surfaceS pointing out from the volumeVl .

At first we consider an infinitely wide vacuum gap through which the electron tunnelling
is impossible (see the discussion after (4)). The stationary electronic states are eigenstates
of the Hamiltonian

Hi = T + Ui (1)
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with i = l, r, T = (−h̄2/2me)1 and

(T + Ui)8i = Ei8i. (2)

Here Ui is a 2× 2 Hermitian matrix that acts on the spin degree of freedom (8i is a
two-component vector) of an electron. For such matrices there exist two independent
eigenvectors denoted as8i1(x) and8i2(x). Their components can be expressed as

8is(x) =
(
ψis,↑(x)
ψis,↓(x)

)
= ψis,↑(x)

(
1
0

)
+ ψis,↓(x)

(
0
1

)
(3)

where (1, 0)T and (0, 1)T are transposed eigenvectors of theσz Pauli matrix andψis,σ (x)
are functions describing the spatial dependence of the spinor components.

Now we assume a finite vacuum gap allowing low-rate tunnelling between the electrodes.
We take the values ofUl andUr in the vacuum to be zero (see also [21]). Then the total
Hamiltonian can be written as (see figure 2)

H = T + Ul + Ur. (4)

We assume that the wavefunctions8is(x) in (2) and (3) have very small amplitude at
distances from the surface of the order ofd or greater (see figure 2). As a consequence
these wavefunctions have only a small overlap with each other. The smallness of the overlap
allows the construction of a perturbation theory for spin-polarized electron tunnelling as in
the t-H approach to the problem of unpolarized tunnelling [21]. It should be noted that
the representation of the Hamiltonian (4) is not unique since the choice of ‘unperturbed’
Hamiltonian is a matter of convenience. The unperturbed wavefunctions do not necessarily
represent those of independent subsystems (see the discussion of this question in [21]).
The optimal choice of the Hamiltonian that minimizes errors of the first-order perturbation
theory is described in Chen’s book [21] (see also figure 2). In this form the t-H method
contains effectively [21] a part of the changes of the tunnelling characteristics caused by
the interaction between the electrodes and thus provides a better approximation than the
traditional t-H [20]. In the following we assume that8is and the potentialsUi correspond
to the optimal choice of the Hamiltonian defined in [21].

Considering transitions from left to the right the operatorUr is treated as a perturbation
causing the transitions. Such transitions are most effective whenEl ≈ Er = E [26]. Then
we can find the wavefunction with help of theansatz

ψ(x, t) ≈
∑
is

ais(t)8is(x) e−
iEt
h̄ . (5)

By substituting (5) into the time-dependent Schrödinger equation we obtain

ih̄
∑
is

ȧis(t)8is(x) =
∑
s

(als(t)Ur8ls(x)+ ars(t)Ul8rs(x)). (6)

The scalar product of both sides of (6) with8ls ′ yields

ih̄ȧls ′ ||8ls ′ ||2 =
∑
s

(
als

∫
Vr

8+ls ′Ur8ls dV + ars
∫
Vl

8+ls ′Ul8rs dV

)
(7)

where superscript+ denotes the Hermitian conjugate matrix. Since8ls ′ decays
exponentially inside the volumeVr the first integral in (7) can be neglected. Taking also
into account thatUl is a Hermitian matrix and the equation (Ul8ls ′)

∗ = (E − T )8∗ls ′ (7)
can be written as

ih̄ȧls ′ ≈
∑
s

ars

∫
Vl

(8+rsUl8ls ′)
∗ dV =

∑
s

ars

∫
Vl

(8+rs(E − T )8ls ′)
∗ dV. (8)
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Figure 2. Schematic view of the potential profile (top graph) of the two electrodes separated by
a potential barrier of widthd. The separation surfaceS is located roughly in the middle of the
barrier. Within each electrode there is a periodic crystal potential (c.p.). The two lower graphs
show the potentialsUl andUr used for calculation of the tunnelling probability amplitudes of
the electrons with the t-H approach. The jumps ofUl and Ur at the surfaceS correspond
to the optimal choice of unperturbed Hamiltonians [21] that minimize errors in the first-order
perturbation theory. According to this the potentials have beyond the separation surface a
constant value that is equal to the vacuum level taken here as the zero level of potential energy.

Applying the Green theorem to the term containing the operatorT and the equation∫
Vl

8+lsT 8rs ′ dV = E
∫
Vl

8+ls8rs ′ dV (9)

(8) can be transformed into

ih̄ȧls ′(t) ≈
∑
s

Mls ′,rsars(t) (10)

where

Mls ′,rs = h̄2

2me

∫
dS · [(8+rs ∇8ls ′)

∗ −8+ls ′ ∇8rs ] (11)

are tunnelling matrix elements. Here dS is an element of the separation surface between
the volumesVl andVr (see figure 1).

With an analogous treatment it can be verified that

ih̄ȧrs ′(t) ≈
∑
s

Mrs ′,lsals(t) (12)

where

Mrs ′,ls = − h̄2

2me

∫
dS · [(8+ls ∇8rs ′)

∗ −8+rs ′ ∇8ls ] (13)

and dS has the same direction as in (11).
The elementsMrs ′,ls form a 4× 4 matrix (M). By denoting a(t) = (al1(t),

al2(t), ar1(t), ar2(t))
T (10) and (12) can be written as

ih̄a(t) ≈ Ma(t). (14)
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According to (11) and (13)Mrs ′,ls = M∗ls,rs ′ and we can define a matrixm with elements

ms ′,s = Mls ′,rs . (15)

Then

M =
(

0 m

m+ 0

)
(16)

where0 is a 2× 2 matrix with all components equal to zero.

3. Calculation of the tunnelling current and the conductance

Consider low-rate tunnelling from state|ls′〉 to |rs〉. Thus the initial conditions are

als ′(0) = 1 ars(0) = 0. (17)

It is further assumed thatars is always kept near zero whileals ′ ≈ 1. That is why (14)
yields

ih̄ȧrs(t) ≈ Mrs,ls ′als ′(t). (18)

Applying Fermi’s golden rule [26] the tunnelling rate can be expressed as

d|ars |2
dt
≈ 2π

h̄
|mss ′ |2δ(El − Er). (19)

The total current between the states|ls′〉 and |rs〉 is obtained summing over all relevant
states. We assume a bias voltageV between the two parts. When statistical equilibrium is
maintained in both electrodes the occupation number of each energy state is given by the
Fermi distributionf (E) = {1+ exp[(E − EF )/kBT ]}−1 with EF being the Fermi energy
andkBT the temperature in energy units.

By introducing the density of state factorsNls ′ andNrs the tunnelling current from state
|ls′〉 to state|rs〉 is

Ils ′,rs = 2πe

h̄

∫
dENls ′(E − eV )Nrs(E)f (E − eV )[1− f (E)]|ms,s ′ |2. (20)

Analogously we find the reverse current between states|ls′〉 and |rs〉 as

Irs,ls ′ = 2πe

h̄

∫
dENls ′(E − eV )Nrs(E)f (E)[1− f (E − eV )]|ms,s ′ |2. (21)

The net current between these states is

Is,s ′ = Ils ′,rs − Irs,ls ′ = 2πe

h̄

∫
dENls ′(E − eV )Nrs(E)[f (E − eV )− f (E)]|ms,s ′ |2 (22)

and the total current formed by summing over all tunnelling transitions is

I =
∑
s,s ′
Is,s ′ = 2πe

h̄

∫
dE [f (E − eV )− f (E)]

∑
s,s ′
Nls ′(E − eV )Nrs(E)|ms,s ′ |2. (23)

For kBT � EF we can replace the Fermi distributionf (E) with a step function and write

I = 2πe

h̄

∑
s,s ′

∫ EF+eV

EF

dENls ′(E − eV )Nrs(E)|ms,s ′ |2. (24)

At a low voltage, corresponding toeV � EF , (24) can be expressed as

I ≈ 2πe2V

h̄

∑
s,s ′
Nls ′(EF )Nrs(EF )|ms,s ′ |2. (25)
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This gives by definition the tunnelling conductance

G = I

V
≈ G0

∑
s,s ′
Nls ′(EF )Nrs(EF )|ms,s ′ |2 (26)

where

G0 = (2π)2

RK
(27)

andRK = h/e2 = 25 812.8 � is the von Klitzing constant.

4. Magnetic valve effect, magnetoresistance between two ferromagnets and elements
of the theory of spin-polarized STM

As an example of application of the t-H method we consider the problem of a magnetic valve
between two ferromagnets separated by a narrow vacuum gap. This problem has already
been solved by Slonczewski [22] using an exact solution for spin-polarized free electron
plane waves tunnelling through a rectangular potential barrier between two ferromagnets.
Our approach allows extensions of this solution since it is not bound to a particular model
of the potential barrier in the sense described in the introduction. As a result it is possible
to obtain a physical interpretation of the magnetic valve effect in a more general case.

In our model (see also [22]) the spin-dependent part of the HamiltonianHi (see (1) and
(2)) is

U ′i = −hi · σ (28)

whereσ = (σx, σy, σz) is the Pauli spin operator. The direction of the fieldhi defines the
direction of the quantization axis of the ferromagneti. U ′i inside the barrier vanishes. We
take thez-axis alonghl and assume thathr is tilted by an angleθ with respect to this
direction. In this geometry

U ′l = hlσz = −hl
(

1 0
0 −1

)
(29)

and

U ′r = −hr cosθ σz − hr sinθ σy = −hr
(

cosθ, −i sinθ
i sinθ, − cosθ

)
. (30)

We find that the wavefunctions in (3) have the form

8l1 = χ↑(x)
(

1
0

)
and8l2 = χ↓(x)

(
0
1

)
(31)

where the wavefunctionsχσ (x) depend on the particular form of the crystal potential.
8l1(8l2) is simply the spin-up (spin-down) state that is an eigenfunction ofσz with
eigenvalue+1 (−1). The spinors8rs have an analogous structure and are obtained by
using the spinor transformation [28]

8r1 = ξ↑(x)
(

cos(θ/2)
i sin(θ/2)

)
and8r2 = ξ↓(x)

(
sin(θ/2)
−i cos(θ/2)

)
. (32)

By substituting (31) and (32) into (11), (13) and (15) we get in the one-dimensional
case the following tunnelling matrix

m = h̄
2κ

me

(
ξ ∗↑χ↑ cos(θ/2) ξ ∗↓χ↑ sin(θ/2)
iξ ∗↑χ↓ sin(θ/2) −iξ ∗↓χ↓ cos(θ/2)

)
. (33)
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Here the wavefunctions are taken in the middle of the vacuum gap where the separation
planeS is located.κ is the decay constant of the wavefunctionsξσ andχσ in the vacuum
region. Using these assumptions we can find from (26) the tunnelling conductance at low
voltages:

G = G′0[ρl(x0, EF )ρr(x0, EF )+ml(x0, EF )mr(x0, EF ) cosθ ] (34)

whereG′0 = −(h̄2κ/me)G0. ρi(x0, EF ) andmi(x0, EF ) are electronic local density of states
(LDOS) and the electronic local spin density of theith ferromagnetic electrode at pointx0

and at energyEF , respectively. These functions can be simply expressed as

ρl(x0, EF ) = Nl1|χ↑(x0)|2+Nl2|χ↓(x0)|2 (35)

and

ml(x0, EF ) = Nl1|χ↑(x0)|2−Nl2|χ↓(x0)|2. (36)

The spin-dependent part of the tunnelling conductance is proportional to the scalar
product of the local spin densitiesmi (x0, EF ) taken as vectors pointing alonghi . Such
spin densities have been calculated numerically for several magnetic surfaces and overlayers
[27] although only one surface was considered. As discussed above (after (4)) one electrode
distorts the wavefunctions at the surface of the other electrode, thus affecting its spin-
dependent character. However, when properly used the t-H method in conjunction with
numerical simulations is capable of giving predictions about experimentally observable
magnitudes.

The local degree of spin polarization is defined asPi = mi/ρi . Then the tunnelling
conductance from (34) takes the form

G = G′0ρlρr(1+ PlPr cosθ) (37)

and the tunnelling resistance is

R = G−1 = R0(1+ PlPr cosθ)−1. (38)

ThusR is a periodic function ofθ with an amplitude which depends on the mutual orientation
of the magnetization of the ferromagnets on both sides of the junction. The maximum
relative variation is

1R/R = (RA − RP )/RA = 2PlPr/(1+ PlPr) (39)

whereRA andRP are the junction resistances with antiparallel and parallel orientations of
the magnetizations, respectively. Such a relation was given for the first time by Julliere
who also made the first experiments to observe the effect [2]. However the t-H analysis
above shows that in general the polarization appearing in the valve constant is not the bulk
value but represents the local polarization under influence of the barrier. This can be an
important point while evaluating the magnitude of the valve effect investigated recently (see
[5] and references therein). For instance, tunnelling in a ferromagnet–insulator–ferromagnet
(FM1–I–FM2) trilayer thin-film planar junction has been experimentally investigated [5].
The FM films had different coercive forces (HC1 > HC2). In such a situation the tunnelling
resistance depends on the magnitude of the applied magnetic field and is observed as a large
magnetoresistance of the junction. When rotating the trilayer junction in a magnetic field
between the limitsHC2 < H < HC1 the magnetization in FM2 follows the direction of the
magnetic field and it is possible to change gradually the angleθ between the magnetizations.
Measurement ofR was found to follow the periodic dependence onθ according to (38)
although its actual shape could not be perfectly fitted with the cosine dependence. This
deviation was addressed to nonidealities of the trilayer junction.
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As an simplified example we analyse the magnetic valve in the case of a rectangular
barrier [22]. The result of [22] is simply obtained by substituting in (33)–(38) the functions

χσ (x) = 2klσ
klσ + iκ

e−κ(x+d) κ =
√

2me(−E)
h̄2 klσ =

√
2me(U0+ E ± hl)

h̄2 (40)

and

ξσ (x) = 2krσ
krσ + iκ

eκ(x−d) krσ =
√

2me(U0+ E ± hr)
h̄2 (41)

whereU0 is a constant and the energyE < 0. (40) and (41) give the tails of free-electron
type wavefunctions continued into the vacuum region. However, a rectangular surface
potential is hardly a realistic choice since the surface potential is smooth in the atomic
scale. On the other hand, calculations [29, 30] have been made showing that the effective
one-electron surface potential is different for electrons with opposite spin projections.
Qualitatively these potentials can be fitted with those in [29, 30] by replacing the step
function2(x) in the rectangular potential with a functiongiσ (x) = 1/(1+ exp(−x/αiσ ))
whereαiσ (i = l or r) is a parameter. At the limitαiσ → 0 the functiongiσ (x) approaches
2(x). More precisely we write the spin dependent parts of the operators in (1) and (2) as

U ′l (x) =
(
(U0+hl)/(1+exp(−(x−d)/αl↑)−U0−hl) 0

0 (U0−hl)/(1+exp(−(x−d)/αl↓)−U0+hl)

)
(42)

and

U ′r (x) =
(
(U0+hr )/(1+exp((x+d)/αr↑)−U0−hr ) 0

0 (U0−hr )/(1+exp((x+d)/αr↓)−U0+hr )

)
(43)

whereU0 is a constant. The wavefunctions corresponding to the operatorsU ′l (x) andU ′r (x)
may be found in a way analogous to [14]. By substituting them into (33)–(37) we obtain

G = G′0ρlρr(1+ PlPr cosθ) (44)

with

Pi = (Ai↑ − Ai↓)/(Ai↑ + Ai↓) (45)

and

Aiσ = (κ2+ k2
iσ ) sinh(2πkiσαiσ )|02(καiσ − ikiσ αiσ )|2. (46)

It can be seen thatPi is highly sensitive to the value ofαiσ when it changes in the range
of a few ångstr̈om units [14]. GenerallyPi approaches 1 [14] whenαiσ grows. This
increases the magnetic valve effect in agreement with recent experimental results (1R/R

close to 25%). Forαiσ ≈ 0 the value ofPi coincides with Slonczewski’s result [22]
Pi = (ki↑ − ki↓)(κ2 − ki↑ki↓)/(ki↑ + ki↓)(κ2 + ki↑ki↓) according to whichPi can have
low values or it can even be negative depending on the barrier height (∝ κ2). These two
examples clarify our method. However, as already pointed out it is in general necessary to
use numerical simulations along with the t-H method to be able to find results for comparison
with experiments.

Returning to the theory of SPSTM we should use a 3D approach instead of the 1D one
as above. Here we adopt the method introduced by Chen [21]. In STM the tip (at the
left) state may be considered as being always the same during an STM experiment while
different sample (at the right) states are probed. Thus we should choose a particular tip
state and consider an arbitrary sample state in (11) and (13). Only the vacuum tails of these
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wavefunctions are required. Expanding the tip wavefunction into its spherical-harmonic
components and taking into account only the spherically symmetric (s-state) part we get

χσ (x) ≈ Cσ exp(−κ|x− x0|)/|x− x0| (47)

wherex0 is the location of the nucleus of the apex atom. By applying the Chen derivative
rule the tunnelling matrix can be expressed as

m ∝
(
ξ∗↑(x0)C↑ cos(θ/2) ξ∗↓(x0)C↑ sin(θ/2)
iξ ∗↑(x0)C↓ sin(θ/2) −iξ∗↓(x0)C↓ cos(θ/2)

)
(48)

and the tunnelling conductance as

G ∝ (1+ Ps(x0)Pt cos(θ)) (49)

wherePs(x0) is the local degree of spin polarization of the sample at the position of the tip
apex. Pt is the asymptote of the degree of spin polarization of the tip at the vacuum gap
and can be given in the form

Pt = Nl1|C↑|2−Nl2|C↓|2
Nl1|C↑|2+Nl2|C↓|2 . (50)

As a result spin-polarized STM images the local degree of spin polarization at the position
of the tip apex, a result analogous to that by Hamann and Tersoff for normal STM [21].
Numerical calculations like those in [27] can be used to evaluate the corrugation amplitudes
obtained with such devices using a ferromagnetic tip [6, 8].

5. Concluding remarks

The Bardeen transfer-Hamiltonian method is applied for description of electron spin-
dependent tunnelling effects. Motivation for this comes from recent experimental
investigations using spin-polarized scanning tunnelling microscopy and spin-dependent
tunnelling current and exchange effects in magnetic nanostructures and multilayers.

Using the time-dependent perturbation theory the spin-dependent tunnelling probability
amplitudes are expressed by a 2× 2 matrix with elements evaluated through the overlap
between the spinor components of the electron wavefunctions from both sides of the potential
barrier. As a result spin-dependent tunnelling current and tunnelling conductance are found.
In a particular case of tunnelling between two ferromagnets the magnetic valve effect is
described. As another example of the spin-polarized t-H approach the physical meaning of
surface images obtained on a ferromagnet with spin-polarized STM using a ferromagnetic
tip is discussed.
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